21 research outputs found

    Efficient Data Structures for Incremental Exact and Approximate Maximum Flow

    Get PDF
    We show an (1+?)-approximation algorithm for maintaining maximum s-t flow under m edge insertions in m^{1/2+o(1)} ?^{-1/2} amortized update time for directed, unweighted graphs. This constitutes the first sublinear dynamic maximum flow algorithm in general sparse graphs with arbitrarily good approximation guarantee. Furthermore we give an algorithm that maintains an exact maximum s-t flow under m edge insertions in an n-node graph in O?(n^{5/2}) total update time. For sufficiently dense graphs, this gives to the first exact incremental algorithm with sub-linear amortized update time for maintaining maximum flows

    Incremental Exact Min-Cut in Poly-logarithmic Amortized Update Time

    Get PDF
    We present a deterministic incremental algorithm for exactly maintaining the size of a minimum cut with ~O(1) amortized time per edge insertion and O(1) query time. This result partially answers an open question posed by Thorup [Combinatorica 2007]. It also stays in sharp contrast to a polynomial conditional lower-bound for the fully-dynamic weighted minimum cut problem. Our algorithm is obtained by combining a recent sparsification technique of Kawarabayashi and Thorup [STOC 2015] and an exact incremental algorithm of Henzinger [J. of Algorithm 1997]. We also study space-efficient incremental algorithms for the minimum cut problem. Concretely, we show that there exists an O(n log n/epsilon^2) space Monte-Carlo algorithm that can process a stream of edge insertions starting from an empty graph, and with high probability, the algorithm maintains a (1+epsilon)-approximation to the minimum cut. The algorithm has ~O(1) amortized update-time and constant query-time

    A Tree Structure For Dynamic Facility Location

    Get PDF
    We study the metric facility location problem with client insertions and deletions. This setting differs from the classic dynamic facility location problem, where the set of clients remains the same, but the metric space can change over time. We show a deterministic algorithm that maintains a constant factor approximation to the optimal solution in worst-case time O~(2^{O(kappa^2)}) per client insertion or deletion in metric spaces while answering queries about the cost in O(1) time, where kappa denotes the doubling dimension of the metric. For metric spaces with bounded doubling dimension, the update time is polylogarithmic in the parameters of the problem

    Graph Minors for Preserving Terminal Distances Approximately - Lower and Upper Bounds

    Get PDF
    Given a graph where vertices are partitioned into k terminals and non-terminals, the goal is to compress the graph (i.e., reduce the number of non-terminals) using minor operations while preserving terminal distances approximately. The distortion of a compressed graph is the maximum multiplicative blow-up of distances between all pairs of terminals. We study the trade-off between the number of non-terminals and the distortion. This problem generalizes the Steiner Point Removal (SPR) problem, in which all non-terminals must be removed. We introduce a novel black-box reduction to convert any lower bound on distortion for the SPR problem into a super-linear lower bound on the number of non-terminals, with the same distortion, for our problem. This allows us to show that there exist graphs such that every minor with distortion less than 2 / 2.5 / 3 must have Omega(k^2) / Omega(k^{5/4}) / Omega(k^{6/5}) non-terminals, plus more trade-offs in between. The black-box reduction has an interesting consequence: if the tight lower bound on distortion for the SPR problem is super-constant, then allowing any O(k) non-terminals will not help improving the lower bound to a constant. We also build on the existing results on spanners, distance oracles and connected 0-extensions to show a number of upper bounds for general graphs, planar graphs, graphs that exclude a fixed minor and bounded treewidth graphs. Among others, we show that any graph admits a minor with O(log k) distortion and O(k^2) non-terminals, and any planar graph admits a minor with 1 + epsilon distortion and ~O((k/epsilon)^2) non-terminals

    Bootstrapping Dynamic Distance Oracles

    Get PDF

    Fully Dynamic Effective Resistances

    Full text link
    In this paper we consider the \emph{fully-dynamic} All-Pairs Effective Resistance problem, where the goal is to maintain effective resistances on a graph GG among any pair of query vertices under an intermixed sequence of edge insertions and deletions in GG. The effective resistance between a pair of vertices is a physics-motivated quantity that encapsulates both the congestion and the dilation of a flow. It is directly related to random walks, and it has been instrumental in the recent works for designing fast algorithms for combinatorial optimization problems, graph sparsification, and network science. We give a data-structure that maintains (1+ϵ)(1+\epsilon)-approximations to all-pair effective resistances of a fully-dynamic unweighted, undirected multi-graph GG with O~(m4/5ϵ−4)\tilde{O}(m^{4/5}\epsilon^{-4}) expected amortized update and query time, against an oblivious adversary. Key to our result is the maintenance of a dynamic \emph{Schur complement}~(also known as vertex resistance sparsifier) onto a set of terminal vertices of our choice. This maintenance is obtained (1) by interpreting the Schur complement as a sum of random walks and (2) by randomly picking the vertex subset into which the sparsifier is constructed. We can then show that each update in the graph affects a small number of such walks, which in turn leads to our sub-linear update time. We believe that this local representation of vertex sparsifiers may be of independent interest
    corecore